
Year 12 Laboratory Analysis of Organic Compounds Topic Test

Question 1

Complete the table below.

16 marks

Chemical Test for	Name of method or description of method	Observations	Explanation
C=C		A red-orange colour decolourises	
	Lucas test		
COOH		A strong, sweet odour forms	
	Reaction between propanoic acid and sodium bicarbonate		
			An aldehyde is oxidised and hence silver solid is formed
	Potassium Permanganate Test		

Year 12 Laboratory Analysis of Organic Compounds Topic Test

Question 2

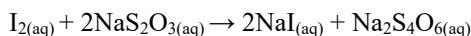
The purity of a solid compound can be determined by its melting point. Discuss how the purity is analysed.

3 marks

Question 3

A mixture of ethanol and octane is to be separated via distillation. The boiling points of ethanol and octane are 78°C and 125°C respectively. Which distillation, simple or fractional, would be most suitable for this application?

2 marks



Question 4

25.00ml of 0.010M iodine solution reacts with 20.00ml of 0.0040M thiosulfate solution according to the following reaction.

Identify the limiting and excess reactant.

3 marks

Question 5 (9 marks)

A 0.5M standardised solution of iron(II) sulfate, $FeSO_4$, was reacted with a 25.00ml aliquot of acidified potassium permanganate solution, $KMnO_4$. The average concordant titre is 24.10ml. Iron(II) ion is converted to iron(III) ion, and permanganate ion is converted to manganese(II) ion.

(a) Write the balanced oxidation equation.

1 mark

(b) Write the balanced reduction equation.

1 mark

(c) Write the balanced overall redox equation.

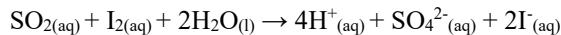
1 mark

Year 12 Laboratory Analysis of Organic Compounds Topic Test

(d) Determine the concentration of potassium permanganate solution in mol L⁻¹. **3 marks**

(e) This titration does not require an indicator. Why is this the case? **1 mark**

(f) Define the difference between the end point and equivalence point. **2 marks**



Year 12 Laboratory Analysis of Organic Compounds Topic Test

Question 6 (15 marks)

Consider the following reaction below,

Sulfur dioxide is important for the preservation of wine as it prevents oxidation that can diminish the colour and flavour of wine. A chemist wants to experimentally determine the concentration of sulfur dioxide in a sample of wine for quality control. To prepare the wine sample for titration, 30.00ml of wine was transferred to a volumetric flask and filled to the 150.0ml mark with deionised water. An average titre of 14.95ml of a 0.100M iodine solution was used to react with a 20.00ml aliquot of wine.

(a) Calculate the concentration of the diluted sulfur dioxide in g L^{-1} . **4 marks**

(b) Determine the concentration of the undiluted sulfur dioxide in the original wine in mol L^{-1} . **3 marks**

(c) The chemist rinsed the burette with deionised water. How would this affect the final concentration of the sulfur dioxide? **3 marks**

(d) The average concordant titre was obtained from three titrations performed by the chemist. How does the average concordant titre influence the reliability of the experiment? **3 marks**

(e) Discuss one systematic error that may affect the calculation of the final concentration of sulfur dioxide. **2 marks**

Year 12 Laboratory Analysis of Organic Compounds Topic Test

Question 7 (3 marks)

After reacting fully with iodine, 0.250g of an unknown oil consumed 1.50ml of 0.10M sodium thiosulfate solution.

(a) Calculate its iodine value.

1 mark

Lipid	Iodine value	Saturation	State at room temperature	Fat or oil classification
Butter	25-40	Saturated 70% Unsaturated 30%	Solid	Fat
Olive Oil	75-95	Saturated 25% Unsaturated 75%	Liquid	Oil
Canola Oil	125-135	Saturated 6% Unsaturated 94%	Liquid	Oil

(b) Comment on the degree of saturation and its state at room temperature based on the table above.

2 marks
