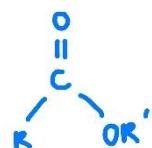
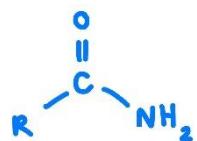
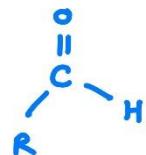
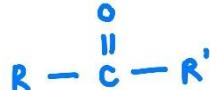


Year 12 Organic Chemistry Mini Question Booklet


Question 1 (6 marks)

Name the following organic molecules using their systematic naming

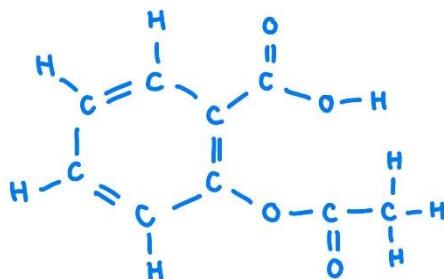
Question 2 (6 marks)

Identify the functional group of the following:

Year 12 Organic Chemistry Mini Question Booklet

Question 3 (2 marks)

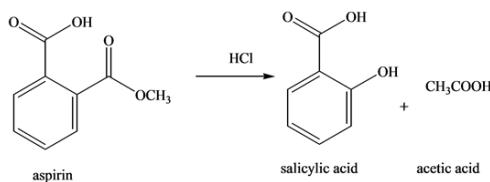
What are the two functional groups that are always in position carbon number 1?


Question 4 (1 mark)

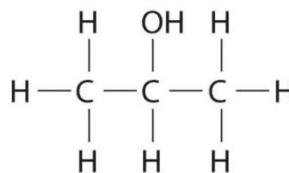
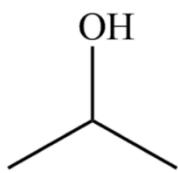
In the space below, draw the following organic compound: 3,3-dimethyl-2-iodoocten-4-oic acid

Question 5 (6 marks)

Acetylsalicylic acid also known as aspirin, is a medicine that helps to reduce headache tension, fever, and inflammation. Its molar mass is 180.158 g mol⁻¹ and its chemical structure is shown below.


(a) Write the chemical formula of acetylsalicylic acid 2 marks

(b) How many functional groups are present in aspirin 2 marks



(c) Aspirin can be converted to salicylic acid inside the small intestine, which is then absorbed by the bloodstream, what functional group is formed 1 mark

Question 6 (6 marks)

All bacterial cells have a cell wall that acts as a barrier to protect the bacterium and store its components within. In order to remove bacteria from surfaces, 2-propanol is a common alcohol that is a central component of many cleaning disinfectants including hand sanitisers. Like all alcohols, there is a polar (hydrophilic, water ‘loving’) and a non-polar (hydrophobic, water ‘hating’) component to the molecules.

When 2-propanol is in contact with a bacterium its non-polar segment will mix with the bacterium’s cell wall and disrupt the fatty parts of the wall thus exposing the inner components to disintegrate further.

ACTIVE INGREDIENTS:
Ethyl alcohol 70% v/v
INACTIVE INGREDIENTS:
Water (aqua), Isopropyl Alcohol, Caprylyl Glycol, Glycerin, Isopropyl Myristate, Tocopheryl Acetate, Acrylates/C10-30 Acrylate Crosspolymer, Aminomethyl Propanol, Fragrance (Parfum)

(a) Why are most alcohols like 2-propanol able to dissolve in water?

2 marks

(b) Why would an alcohol like 2-propanol be preferred in water-based disinfectants rather than a larger alcohol like hexan-2-ol?

3 marks

(c) Would 2-propanol be readily oxidised to form the ketone propanone?

1 mark

Year 12 Organic Chemistry Mini Question Booklet

Question 7 (6 marks)

The table below lists four semi structural molecules that are different in their functional groups.

Semi-structural formula	Molar mass (g mol ⁻¹)	Boiling point (°C)
CH ₃ CH ₂ CH ₂ CH ₃	58	-0.5
CH ₃ CH ₂ CH ₂ OH	60	97
HCOOCH ₃	60	32
CH ₃ COCH ₃	58	56

(a) It appears that the alcohol on the table above has the highest boiling point. Provide reasoning for this observation **3 marks**

(b) Which of the four organic molecules would have the highest flashpoint and provide reasoning **3 marks**

Year 12 Organic Chemistry Mini Question Booklet

Question 8 (7 marks)

Petrodiesel and biodiesel are two different types of substances that are both used as a source of fuel but are structured differently.

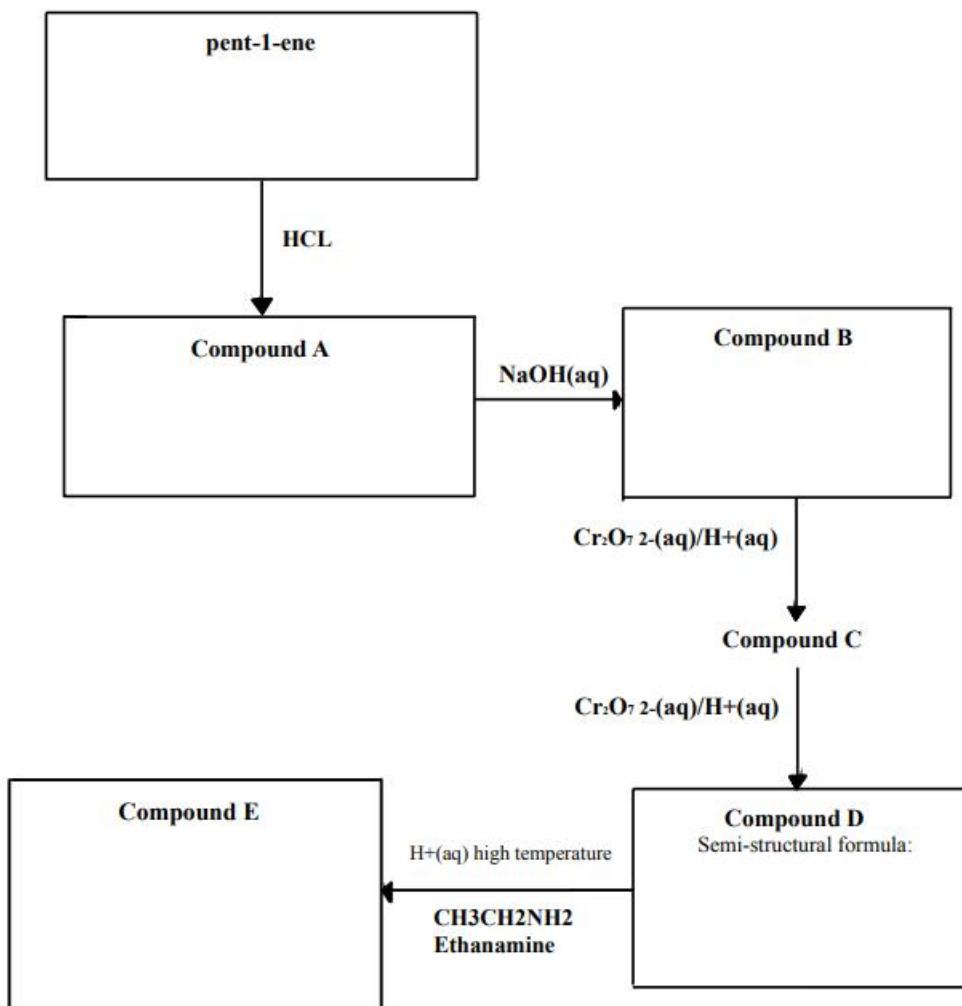
Fuel	Major component	Energy content (MJ/kg)	CO ₂ emission (kg CO ₂ /kg of fuel)
petrodiesel	C ₁₂ H ₂₆	43	3.17
biodiesel	C ₁₉ H ₃₂ O ₂	38	2.52

(a) Petrodiesel is referred to as a saturated hydrocarbon that determines all of its properties as a fuel. What does saturated mean? **1 mark**

(b) E10, a type of fuel, contains a maximum of 10% ethanol component before safety of the driver is at risk. Why would additional amounts ethanol be an issue especially to older vehicles? **2 marks**

(c) Calculate how much CO₂ emission is released when 10800MJ of petrodiesel is released under complete combustion. **2 marks**

(d) There is a major push to distribute biodiesel as the main fuel source worldwide to reduce CO₂ impact on the environment. This may not benefit the environment as much as predicted. Provide a reason for this. **2 marks**

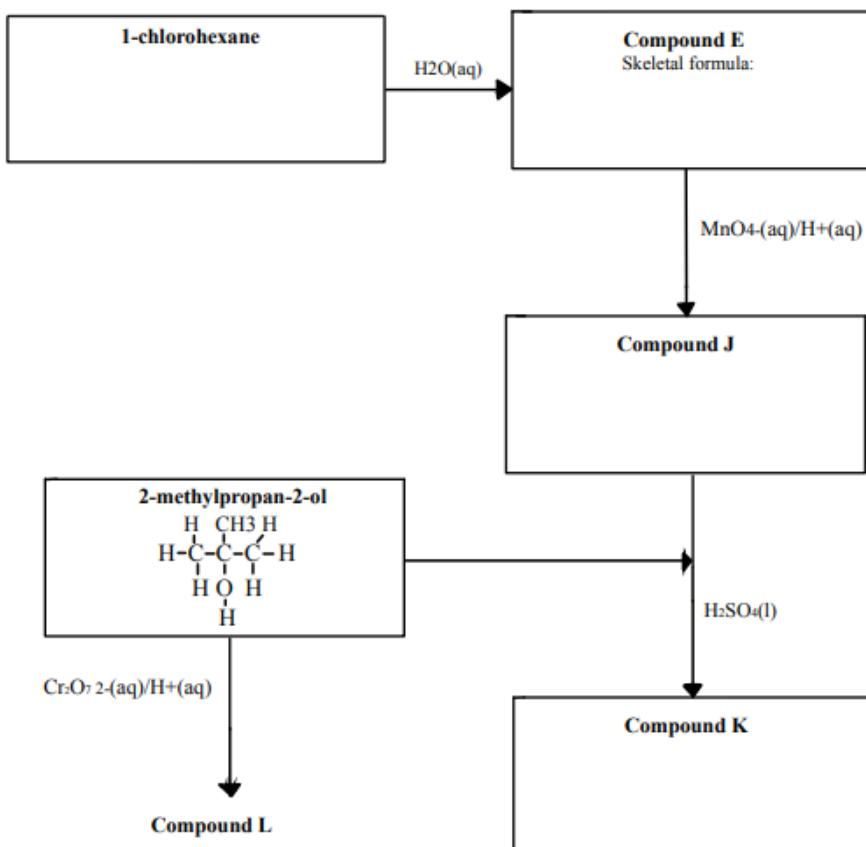


Question 9 (6 marks)

The following diagram is a reaction pathway for the synthesis of compound E

(a) Draw the structural formula for pent-1-ene in the box provided **1 mark**

(b) When pent-1-ene reacts with HCl compound A is formed. Identify compound A and the reaction that occurred **2 marks**


(c) Identify compound B and draw its structural formula in the box provided **1 mark**

(d) Compound B has undergone two reactions to form Compound D using the reagents listed. Write the semi-structural formula of Compound D in the box provided. **1 mark**

(e) Compound E, the desired molecule, is formed when compound D is mixed with ethanamine, $\text{CH}_3\text{CH}_2\text{NH}_2$. Draw its structural formula in the box provided. **1 mark**

Question 10 (8 marks)

Below is a reaction pathway beginning with 1-chlorohexane.

(a) Draw the structural formula of 1-chlorohexane in the box provided **1 mark**

(b) Draw the skeletal structure of compound E in the box provided **2 marks**

(c) Once compound E is formed it then oxidised to form J, a carboxylic acid. Draw the structural formula for compound J in the box provided **1 mark**

(d) Butan-2-ol is reacted with compound J using propanoic acid, $\text{H}_2\text{SO}_4(\text{l})$, as a catalyst.

(e) Draw the structural formula for compound K in the box provided **1 mark**

(f) Name the homologous series to which compound K belongs to **1 mark**

(g) The reaction pathway suggests that 2-methylpropan-2-ol can be oxidised to form compound L. Explain, with reasoning, the error in this suggestion. **2 marks**
